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1 INTRODUCTION

We consider only isotropic elastic materials, and for simplicity thermal effects are
neglected until §5. Under these conditions, the pressure is typically assumed to be
a function of density only. However, nonlinear elasticity theory predicts that the
pressure also depends on the shear strain, although isotropy implies this effect is
necessarily of second order; cf. Scheidler [1]. In §4 we derive exact formulas for the
pressure and bulk modulus in a state of uniaxial strain. The effect of shear strain
can be seen by comparing these results with the corresponding relations for a state
of hydrostatic stress (§3). Our results are based on exact formulas for the speeds
of acceleration waves (§2). Applications to the analysis of data from pressure/shear
tests are discussed in §5.

2 ACCELERATION WAVE SPEEDS

Let F denote the deformation gradient relative to the undeformed and unstressed
state. The left Cauchy-Green tensor B = FF' has principal values b; = AZ, where );
are the principal stretches, and

1
det F = \/bybybs = A\ Ap)s = 5 p= pﬁ, (2.1)
0

where p and p, denote the densities in the deformed and undeformed state. The
principal axes of B are the principal axes of strain in the deformed state. Since the
material is isotropic and elastic, these axes are also the principal axes of the Cauchy
stress tensor T, and T is an isotropic function of B. This implies that there is a
single function £ such that the principal stresses ¢; are given by

ti = f(bi, b]) bk) = f(bi, bk7 bJ) ’ (22)

for any permutation i, j, k of 1,2,3; cf. Truesdell & Noll [2, §48]. It follows that the
pressure

P = —:'ls'tI'T = _—(tl + tz + t3) (2-3)

is a symmetric function of b, b,, b;. Analogous results hold in terms of the principal
stretches ); or in terms of various principal strain measures, e.g., ; — 1, 2(6; — 1),
3(1-1/8;), 0r InA;.

The speed U; of a longitudinal acceleration wave propagating along the ith prin-
cipal axis of strain is given by

o _ o _ o

pU? 2b’6b )V TR

(2.4)




The speed U;; of a transverse (or shear) acceleration wave propagating é,long the sth
principal axis of strain with jump in acceleration parallel to the jth principal axis
(7 # 7) is given by Ericksen’s formula:

ot; 0t
2 = b =2 i =D
pUZ = b (6‘6; Bbj)’ if b =b;,
t: — 1t
= b,‘ : Z 9 if b,#b (25)
b; — b; j

All quantities in (2.4) and (2.5) are evaluated at the wave front. These wave speeds are
in the deformed material (i.e., Eulerian); the corresponding Lagrangian wave speeds
are obtained by dividing by A;. Proofs of (2.4) and (2.5) can be found in Truesdell
& Noll [2, §74] and Wang & Truesdell 3, §VL.5]. These formulae do not require that
the region ahead of the wave be at rest or in a homogeneous state of strain. However,
when these conditions are satisfied, (2.4) and (2.5) also apply to the speeds of plane
infinitesimal sinusoidal waves; cf. Truesdell & Noll |2, §73].

3 HYDROSTATIC STRESS

For a purely dilatational deformation, we have
b;=p"2* and t;,=-p (:=1,2,3). (3.1)

In this hydrostatic stress state, every axis is a principal axis of stress and strain, and
the pressure p is a function p, of p or p. Here and below, an “R” subscript denotes
the hydrostatic stress state. From (2.2), (2.4), (2.5),, and (3.1), it follows that for a
given density p there is a single longitudinal wave speed U; = Uy ;, and a single shear
wave speed U;; = Uy, and that

QU‘Z .

dp Lh " 3Ysh> (3.2)

cf. Wang & Truesdell [3, §VI.5]. A different proof of this well-known result is given by
Truesdell & Noll [2, §75]. We assume p, is a strictly increasing function of p. Then
(3.2) implies the longitudinal wave speed is greater than the shear wave speed. With
the longitudinal, shear, and bulk moduli defined by

L, = pUL":h Gy = pUs,zh (3.3)
dp, _ .dpy

Kpy=p—=p——, 3.4

lrr F (34)

(3.2) implies the well-known relation

I{h == Lh - %Gh . (3.5)
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We use a zero subscript to denote functions evaluated at the undeformed and un-
stressed state where A; = b; = = 1; in particular, K, = L, — £G,. By (3.4),

Pr/Ko = (5 —1) +ao(p —1)?, (3.6)
where the dimensionless constant a, is given by

1 ( dK,

0_ 2 dph

_ 1 d2ph
%= oK, dp?

- 1) : | (3.7)
4 UNIAXIAL STRAIN

For a state of uniaxial strain along the 1-axis,

Al':\/a:l/ﬁ, A2=A3=bz=b3=1, (4.1)

and (2.2) implies ¢, = t;. The principal stresses ¢; are positive in tension; if o; =
—t; then o; is positive in compression. We use a “u” subscript to denote uniaxial
strain and consider only waves propagating along the 1-axis into a uniaxially strained
material. The Eulerian wave speed Uy, = U, of a longitudinal acceleration wave is

given by (2.4) with ¢ = 1, and by (4.1) we also have

do do
L,=pU? =p—==p—L. 4.2
It follows that a longitudinal acceleration wave can propagate only if doy/dp > 0,
i.e., if oy is a strictly increasing function of 5, which we now assume. By (4.1), the
material is strained iff § # 1iff b; # b,. In this case (2.5), and (4.1) imply the following
formulas for the Eulerian speed Us,, = Uy, of a transverse or shear acceleration wave:

=B L=t ti-1,
Su T lp—b, 1-p2
0'1—0'2 27'

= 52—1=52—1, (4.3)

where 7 is the shear stress:

T

';'(‘71 —0y) = %(tz —t). (4.4)

The Lagrangian wave speeds are jUp,, and p Us,. If 5 > 1 the material is in compres-
sion, and (4.3) implies that a shear acceleration wave can propagate only if o; > a,.
When § = 1, the results of the previous section apply, and we have G, |, = G, and
LulO = LO'



From (4.3) we have the following fundamental formula for the shear stress in
uniaxial strain:
T=1(p? - 1)G,. (4.5)
Since t, = t3, (2.3) and (4.4) imply the following well-known relation between the
(compressive) longitudinal stress oy, the shear stress 7, and the pressure p,, in uniaxial
strain:

Dy =0y — 57, (4.6)
On substituting (4.5) into (4.6), we obtain the following fundamental formula for p,,:
Py =01 - 3(5* - 1)G,. (4.7)

We define the bulk modulus K, in uniaxial strain by

_ dp, _dp, _ dp,
Ku:pdp ~pdﬁ —Ludo_l. (48)

Then from (4.7) and (4.2), we obtain

. 4G,
K, = L,~3p*G, - 3(p? - 1)p &
= (L, — 3G.) — 3(3* - 1)H,, (4.9)
dG, 1d
H,=2G, + p—— P "d”(sz) (4.10)

At p =1, (4.9) reduces to K,|o = Lo — 4G = K,. From (4.9) and (4.10) it follows
that K, = L, — $G, for all j iff H, = 0 iff G, = G,/p?, but there is no reason to
expect such dependence in general, and thus no reason to expect that K, = L, — 3G,
except in the limit of zero strain. Of course, by analogy with (3.5) we could have
defined K, to be L, — £G,, but then (4.8) would not hold. From (4.9) we see that
for a state of compression, K, < L, — 4G, if H, >0, and K, > L, — 4G, if H, < 0.
We assume that p, is a strictly increasing function of 5. Then any function of 5 may
also be regarded as a function of ¢, or p,, and by (4.2) and (4.8) we have
d d d d
p P p 7 L"dal K"dp,, (4.11)
The results up to this point are exact. We now consider some useful approximate
relations. From (4.8) we have

Pu/Kom (p—1)+bo(p —1)% (4.12)
where the dimensionless constant b, is given by
1 d?p,

by = — —==
°T 2K, dp?

1 ( dK, 1) w3
o 2\dp,|, ) )



For use in (4.12)-(4.13), note that (4.9) implies

L, (dL d 8
8| _ Lo (dlu) 8 dCu| ) 8Co (4.14)
dpu 0 I{O do*l 0 3 d0'1 0 3 I{O

From (3.6)—(3.7) and (4.12)-(4.13), we see that

Pu % ph + Koco(p — 1)2, (4.15)
Pu—DPn  Pu—DPn "

~ = -1), 4.16
o R a-1) (4.16)

where the dimensionless constant ¢, is given by

1 (dK, dK;,

Co—bo—ao—‘z-(dpuo'““&’z');'). (4.17)

On comparing (4.16) with equation (4.6) in Scheidler [1], we find that ¢, is also given

by
_2(dG,
CO - 3 dph

- %‘;) : (4.18)

0

5 DISCUSSION

The longitudinal stress o; as a function of § in uniaxial strain can be obtained
from normal plate impact tests. Then the relation (4.6) (which does not rely on the
assumption that the response is elastic) is typically used to determine the pressure
P, in uniaxial strain given some assumptions on the shear stress 7, or to determine 7
given some assumptions on p,. It is often assumed that p,(5) is equal to the pressure
pr(P) in a state of hydrostatic stress at density  (or to some appropriate modification
of pj, to include thermal effects in the shocked state). Such an approximation neglects
the effects of shear strain (or shear stress) on p,. That this effect may be significant
in ceramics, geologic materials, and polymers has been emphasized by Gupta [4]
and Conner [5]. These materials can sustain relatively large elastic shear strains
(compared to metals), although for polymers viscoelastic effects should also be taken
into account. Only elastic response is considered here. Then (4.15) implies that p,(5)
differs from p,(p) by a term of order (5 — 1)? unless ¢, = 0, which is generally not
the case. If ¢, and p,(p) are known, then (4.15) provides an approximation to p, to
within an error of order (5 — 1)3. The relative error in approximating p, by pj, is of
order 5 — 1 and can be estimated by using (4.16).

In a pressure/shear (or oblique plate impact) test, a longitudinal wave propagates
into the undeformed material, bringing it to a state of uniaxial strain, and a slower
shear wave propagates into this uniaxially strained material. These tests yield both
01(p) and the shear wave speed Us, (and hence G,) as a function of j or ;. I
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the shear wave travels at the acceleration wave speed, then (4.5), (4.7), and (4.9)
provide ezact formulas for the shear stress 7, the pressure p,, and the bulk modulus
K, in uniaxial strain as a function of g or ;. These formulas appear to have gone
unnoticed, however. Instead, it is usually assumed that K, ~ L, — $G,. This
approximate relation, together with (4.8), is then integrated to give p, as a function
of 5; cf. Gupta [4, 6], Conner [5], and Aidun & Gupta [7]. For fused silica in the strain
range 0 < g — 1 < 0.076, the response is elastic and the shear wave speed decreases
with p; cf. Conner [5]. In this strain range the shear wave is an acceleration wave (cf.
also Abou-Sayed & Clifton [8]), so we may apply the results of §4. Using (4.9) and
Conner’s data, we find that at a strain of g — 1 = 0.076 the estimate K, ~ L, — -;—Gu
is low by about 29%.

Whether the shear wave in a pressure/shear test is an acceleration wave or a
shock wave depends on the nonlinear elastic response of the material; cf. Davison
[9]. The shear modulus G, in §4 is defined in terms of the acceleration wave speed
Us,, or equivalently, in terms of the speed of a plane infinitesimal sinusoidal shear
wave; cf. §2. If a shear shock with speed U can propagate in the uniaxially strained
material and if we set G = pU?, then the formulas in §4 hold approximately when
G, is replaced with G. Also note that if U > U, (as standard stability arguments
would imply), then G > G,,, and (4.5) and (4.7) imply that 7 < 1(52 — 1)G and
Py > 01— %(p2 — 1)G in compression (5 > 1).

We conclude with a brief discussion of thermodynamic effects, which have been
neglected up to this point. If a thermoelastic material conducts heat by Fourier’s law
[respectively, is a nonconductor], then a longitudinal acceleration wave propagates
at the isothermal [respectively, adiabatic] wave speed. However, the formula (4.3)
for the speed of a shear acceleration continues to hold in either case; cf. Bowen
& Wang [10]. In fact, it can be shown that (4.3) holds even if heat conduction
is governed by Cattaneo’s equation, which prohibits instantaneous propagation of
thermal disturbances. Thus the formulas (4.5) and (4.7) for the shear stress and the
pressure continue to hold. In particular, they are valid when the state of uniaxial
strain has been achieved by shock loading.
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